Introduction to the Issue on Organic Nanophotonics - DTU Orbit (30/11/2018)

Introduction to the Issue on Organic Nanophotonics

The papers in this special issue focus on the topic of organic nanophotonics. Since early works in the 1980s, significant advances have been made in organic materials with semiconducting and photonic properties due to the development of materials/device technologies on the nanoscale. The most impressive outcomes include organic light-emitting devices (OLEDs) that are now competing with the well-established liquid crystal display technology in the mobile and television markets. In addition, organic solar cells (OSCs) offer the potential to create new paradigms for ultrathin and lightweight plastic solar modules in the coming flexible electronics era. Further developments are ongoing across a broad range of organic nanophotonics topics including organic laser devices, organic phototransistors, organic plasmonic devices, etc. This issue introduces recent cutting-edge research from the fast-breaking area of organic nanophotonics. The subject in this special issue includes organic lasers, OLEDs, organic photovoltaics, organic phototransistors, microcavities, and related materials. In particular, most papers included in this special issue offer insights into technology innovations including flexible optoelectronics. We trust that readers will benefit from the timely and in-depth research presented in this special issue and get an insight into future nanophotonics directions with organic and related materials.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Functional organic materials, Kyungpook National University, University of Oxford, Beijing Jiaotong University, Monash University
Number of pages: 3
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: IEEE Journal on Selected Topics in Quantum Electronics
Volume: 22
Issue number: 1
Article number: 0200103
ISSN (Print): 1077-260X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.116 SNIP 1.346
Web of Science (2017): Impact factor 3.367
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.99 SJR 1.217 SNIP 1.409
Web of Science (2016): Impact factor 3.971
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.03 SJR 1.475 SNIP 1.437
Web of Science (2015): Impact factor 3.466
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.49 SJR 1.884 SNIP 2.044
Web of Science (2014): Impact factor 2.828
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.55 SJR 2.249 SNIP 2.353
Web of Science (2013): Impact factor 3.465
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.35 SJR 2.736 SNIP 2.598
Web of Science (2012): Impact factor 4.078
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2