Intrinsic XRF corrections in Timepix3 CdTe spectral detectors

One of the limitations of Hybrid Pixel Detectors (HPD) is the intrinsic X-ray fluorescence emission from the detector semiconductor sensor. These fluorescence photons cause artifacts and false peaks in the photon energy spectrum measured by the HPD. ADVAPIX-Timepix3 is an energy dispersive HPD based on a semiconductor sensor (Si/CdTe/CZT/GaAs) and readout by a Timepix3 ASIC. Timepix3 is capable of measuring simultaneous Time-Over-Threshold (Energy) and Time-of-Arrival as well as sparse readout. This allows unambiguous one-by-one photon detection where each photon measurement is assigned a time stamp. In this work, we use the time and energy information of every single photon to identify intrinsic XRF events in a 57Co radioactive source spectrum as measured by a CdTe based detector. We compute the minimum time (ns) and space (pixels) coincidence window, between the XRF and escape photons, that is required to suppress the XRF effect. These parameters were found to be ± 15 ns and 10 pixels (pixel size = 55 μm) for 1 mm CdTe at 3000 V/cm, 24 \pm 1°C, and a flux of 1.666×10^3 photons/s before correction.

General information

State: Published
Organisations: Neutrons and X-rays for Materials Physics, Department of Physics, Advacam s.r.o, University of Copenhagen
Contributors: Khalil, M., Turecek, D., Jakubek, J., Kehres, J., Dreier, E. S., Olsen, U. L.
Number of pages: 9
Publication date: 2019
Peer-reviewed: Yes

Publication information

Journal: Journal of Instrumentation
Volume: 14
Issue number: 1
ISSN (Print): 1748-0221
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.23 SJR 0.642 SNIP 1.04
Web of Science (2017): Impact factor 1.258
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.22 SJR 0.903 SNIP 1.164
Web of Science (2016): Impact factor 1.22
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.96 SJR 0.833 SNIP 0.966
Web of Science (2015): Impact factor 1.31
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.08 SJR 0.683 SNIP 1.062
Web of Science (2014): Impact factor 1.399
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.23 SJR 0.791 SNIP 1.089
Web of Science (2013): Impact factor 1.526
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.14 SJR 0.477 SNIP 1.361
Web of Science (2012): Impact factor 1.656
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.93 SJR 1.126 SNIP 2.578
Web of Science (2011): Impact factor 1.869
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.601 SNIP 2.913
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.759 SNIP 2.87
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.283 SNIP 0.668
Scopus rating (2007): SJR 0.216 SNIP 0.526
Original language: English
Keywords: Hybrid detectors, Image processing, Solid state detectors, X-ray detectors
DOIs:
10.1088/1748-0221/14/01/C01018
Source: FindIt
Source-ID: 2443125789
Research output: Research - peer-review › Conference article – Annual report year: 2019