Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis - DTU Orbit (31/03/2019)

Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis

International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.

General information
State: Published
Organisations: National Veterinary Institute, Section for Immunology and Vaccinology, University of Copenhagen, Statens Serum Institut
Number of pages: 12
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Immunology
Issue number: 6
Article number: 628
ISSN (Print): 1664-3224
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.62 SJR 2.803 SNIP 1.484
Web of Science (2017): Impact factor 5.511
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 5.37 SJR 3.034 SNIP 1.476
Web of Science (2016): Impact factor 6.429
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 5.09 SJR 2.827 SNIP 1.277
Web of Science (2015): Impact factor 5.695
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 4.24 SJR 2.389 SNIP 1.057
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 1.908 SNIP 0.855
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 1.38 SJR 0.809 SNIP 0.193
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.121
Web of Science (2011): Indexed yes
Original language: English
Electronic versions:
2015_Lorenzen_et_al_Chlamydia_im_prime_in_boost_Frontiers_IMMUNOL.pdf
DOIs:
10.3389/fimmu.2015.00628