Internal Fiber Structure of a High-Performing, Additively Manufactured Injection Molding Insert

A standard mold is equipped with additively manufactured inserts in a rectangular shape produced with vat photo polymerization. While the lifetime compared to conventional materials such as brass, steel, and aluminum is reduced, the prototyping and design phase can be shortened significantly by using flexible and cost-effective additive manufacturing technologies. Higher production volumes still exceed the capability of additively manufactured inserts, which are overruled by the stronger performance of less-flexible but mechanically advanced materials. In this contribution, the internal structure of a high-performing, fiber-reinforced injection molding insert has been analyzed. The insert reached a statistically proven and reproducible lifetime of 4,500 shots, which significantly outperforms any other previously published additively manufactured inserts. Computer tomography, tensile tests and life cycle analysis have been performed in order to provide an understanding of the internal structure of the fiber-reinforced, additively manufactured injection molding inserts.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering, Department of Physics, Neutrons and X-rays for Materials Physics, Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics
Number of pages: 5
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: A I P Conference Proceedings Series
Volume: 2065
Article number: 030054
ISSN (Print): 0094-243X
Ratings:
BFI (2018): BFI-level 1
Original language: English
Keywords: Additive Manufacturing, Injection Molding, Inserts, Computed Tomography, Fiber-Reinforcement
DOIs: 10.1063/1.5088312
Research output: Contribution to journal › Conference article – Annual report year: 2018 › Research › peer-review