DOI

View graph of relations

A nanodispersed intermetallic GaPd2/SiO2 catalyst is prepared by simple impregnation of industrially relevant high-surface-area SiO2 with Pd and Ga nitrates, followed by drying, calcination, and reduction in hydrogen. The catalyst is tested for CO2 hydrogenation to methanol at ambient pressure, revealing that the intrinsic activity of the GaPd2/SiO2 is higher than that of the conventional Cu/ZnO/Al2O3, while the production of the undesired CO is lower. A combination of complementary in situ and ex situ techniques are used to investigate the GaPd2/SiO2 catalyst. In situ X-ray diffraction and in situ extended X-ray absorption fine structure spectroscopy show that the GaPd2 intermetallic phase is formed upon activation of the catalyst via reduction and remains stable during CO2 hydrogenation. Identical location-transmission electron microscopy images acquired ex situ (i.e., micrographs of exactly the same catalyst area recorded at the different steps of activation and reaction procedure) show that nanoparticle size and dispersion are defined upon calcination with no significant changes observed after reduction and methanol synthesis. Similar conclusions can be drawn from electron diffraction patterns and images acquired using environmental TEM (ETEM), indicating that ETEM results are representative for the catalyst treated at ambient pressure. The chemical composition and the crystalline structure of the nanoparticles are identified by scanning TEM energy dispersive X-ray spectroscopy, selected area electron diffraction, and atomically resolved TEM images.
Original languageEnglish
JournalA C S Catalysis
Volume5
Issue number10
Pages (from-to)5827-5836
Number of pages10
ISSN2155-5435
DOIs
StatePublished - 2015
CitationsWeb of Science® Times Cited: 23

    Keywords

  • Methanol synthesis, Intermetallics, In situ characterization, XRD, TEM, EXAFS
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 117913647