Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures - DTU Orbit (03/04/2019)

Interlayer Excitons and Band Alignment in MoS2/hBN/WSe2 van der Waals Heterostructures

van der Waals heterostructures (vdWH) are ideal systems for exploring light-matter interactions at the atomic scale. In particular, structures with a type-II band alignment can yield detailed insight into carrier-photon conversion processes, which are central to, for example, solar cells and light-emitting diodes. An important first step in describing such processes is to obtain the energies of the interlayer exciton states existing at the interface. Here we present a general first-principles method to compute the electronic quasi-particle (QP) band structure and excitonic binding energies of incommensurate vdWHs. The method combines our quantum electrostatic heterostructure (QEH) model for obtaining the dielectric function with the many-body GW approximation and a generalized 2D Mott-Wannier exciton model. We calculate the level alignment together with intra- and interlayer exciton binding energies of bilayer MoS2/WSe2 with and without intercalated hBN layers, finding excellent agreement with experimental photoluminescence spectra. A comparison to density functional theory calculations demonstrates the crucial role of self-energy and electron-hole interaction effects.

General information
State: Published
Organisations: Center for Nanostructured Graphene, Department of Physics, Theoretical Atomic-scale Physics
Contributors: Latini, S., Winther, K. T., Olsen, T., Thygesen, K. S.
Number of pages: 8
Pages: 938-945
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Nano Letters
Volume: 17
Issue number: 2
ISSN (Print): 1530-6984
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 13.07
Web of Science (2017): Impact factor 12.08
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.4
Web of Science (2016): Impact factor 12.712
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 14.76
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 14.04
Web of Science (2014): Impact factor 13.592
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 14.23
Web of Science (2013): Impact factor 12.94
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 13.78
Web of Science (2012): Impact factor 13.025
ISI indexed (2012): ISI indexed yes