Inter-laboratory and inter-assay comparison on two real-time PCR techniques for quantification of PCV2 nucleic acid extracted from field samples

Several real-time PCR assays for quantification of PCV2 DNA (qPCR) have been described in the literature. Different in-house assays are being used by laboratories around the world. A general threshold of 10^3 copies of PCV2 per millilitre serum for postweaning multisystemic wasting syndrome (PMWS) diagnosis has been suggested. However, neither inter-laboratory nor inter-assay comparisons have been published so far. In the present study two different qPCR probe assays used routinely in two laboratories were compared on DNA extracted from serum, nasal and rectal swabs. Results showed a significant linear association between the assays (p < 0.0001) and a systematic difference of 1.4 log(10) copies of PCV2 per millilitre of sample (p < 0.0001). This difference indicated that the assay from laboratory 1 yielded a higher output than the one from laboratory 2. Results also showed that there was no linear association between the amount of PCV2 DNA and the amount of total DNA, neither in nasal (p = 0.86) nor in rectal (p = 0.78) swabs, suggesting that normalizing of PCV2 DNA load in swab samples to total DNA concentration is not suitable. The present exploratory study highlights the need for the performance of ring trials on qPCV2 protocols between laboratories. Meanwhile, the proposed thresholds for PMWS diagnosis should only be considered reliable for each particular laboratory and each particular assay.

General information
State: Published
Organisations: Section for Veterinary Diagnostics, Division of Veterinary Diagnostics and Research, National Veterinary Institute, Section for Veterinary Epidemiology and public sector consultancy, Virology
Pages: 172-178
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Veterinary Microbiology
Volume: 133
Issue number: 1-2
ISSN (Print): 0378-1135
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.7 SJR 1.175 SNIP 1.241
Web of Science (2017): Impact factor 2.524
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.65 SJR 1.363 SNIP 1.206
Web of Science (2016): Impact factor 2.628
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.56 SJR 1.413 SNIP 1.21
Web of Science (2015): Impact factor 2.564
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.54 SJR 1.291 SNIP 1.256
Web of Science (2014): Impact factor 2.511
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3 SJR 1.459 SNIP 1.471
Web of Science (2013): Impact factor 2.726
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.18 SJR 1.441 SNIP 1.569
Web of Science (2012): Impact factor 3.127
ISI indexed (2012): ISI indexed yes