When considering interior insulation of historic, multi-storey buildings with solid masonry walls, it is important to focus on two important factors: How big is the building segment to which it can be applied, and what is the significance of how the multi-dimensional geometry of these facades walls is considered in the assessment of the heat saving potential. The findings show that a large proportion of Danish multi-storey dwellings with solid masonry walls, high energy consumption, and uniform characteristics were found to originate from the period 1851–1930. This segment accounts for 25% of all multi-storey apartments in Denmark. It was investigated which relative reduction of the average thermal transmittance could be obtained by interior insulation when simulated in different dimensions, degrees of insulation and thickness. The analysis showed that partial insulation of the spandrels below windows on the 2nd/3rd highest storeys accounted for up to 40% of the average thermal transmittance reduction achievable by fully insulating inside walls, while covering 17% of the space needed in the full insulation strategy. Furthermore, the analysis showed an underestimation of average thermal transmittance by 2-dimensional compared to 3-dimensional simulation by up to 57%, indicating that 3-dimensional analysis is needed to obtain realistic results.
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.23 SJR 1.476 SNIP 2.531
Web of Science (2011): Impact factor 2.386
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.626 SNIP 2.08
Web of Science (2010): Impact factor 2.046
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.533 SNIP 1.811
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.681 SNIP 2.055
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.077 SNIP 1.702
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.382 SNIP 1.764
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.292 SNIP 1.352
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.854 SNIP 1.674
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.504 SNIP 1.387
Scopus rating (2002): SJR 1.189 SNIP 1.671
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.972 SNIP 1.082
Scopus rating (2000): SJR 0.243 SNIP 1.235
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.241 SNIP 0.669
Original language: English
Keywords: Multi-storey, Segment, Saving potential, Historical, Internal insulation, Simulation, Multi-dimensional
DOIs:
10.1016/j.enbuild.2017.12.008
Research output: Research - peer-review; Journal article – Annual report year: 2018