Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of a shape is uniquely embedded in the mesh connectivity of a PAM, enabling both surface and skeletal modeling operations, interchangeably and directly on the mesh itself. We develop an algorithm to convert arbitrary triangle meshes into PAMs as well as techniques to simplify PAMs and a method to convert a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, University of Toronto
Contributors: Bærentzen, J. A., Abdrashitov, R., Singh, K.
Number of pages: 10
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: ACM Transactions on Graphics
Volume: 33
Issue number: 4
Article number: 132
ISSN (Print): 0730-0301
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.42 SJR 1.344 SNIP 2.841
Web of Science (2017): Impact factor 4.384
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.69 SJR 1.946 SNIP 2.57
Web of Science (2016): Impact factor 4.088
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.24 SJR 2.382 SNIP 3.686
Web of Science (2015): Impact factor 4.218
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6 SJR 1.694 SNIP 3.029
Web of Science (2014): Impact factor 4.096
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.18 SJR 1.838 SNIP 2.656
Web of Science (2013): Impact factor 3.725
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.77 SJR 1.228 SNIP 2.797
Web of Science (2012): Impact factor 3.361
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.81 SJR 1.414 SNIP 3.534
Web of Science (2011): Impact factor 3.489
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.385 SNIP 3.595
Web of Science (2010): Impact factor 3.632
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.171 SNIP 3.664
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.429 SNIP 3.734
Web of Science (2007): Indexed yes
Scopus rating (2005): SJR 1.085 SNIP 4.031
Scopus rating (2004): SJR 0.629 SNIP 3.39
Scopus rating (2003): SJR 0.691 SNIP 2.411
Scopus rating (2002): SJR 1.141 SNIP 2.139
Scopus rating (2001): SJR 2.262 SNIP 1.878
Scopus rating (2000): SJR 1.299 SNIP 2.424
Scopus rating (1999): SJR 1.257 SNIP 3.43
Original language: English
Keywords: Shape Modeling, polygonal mesh, Skeleton
Electronic versions:
PAM_SIGGRAPH2014_1.pdf
DOIs:
10.1145/2601097.2601226
URLs:
http://www2.compute.dtu.dk/~janba/pam/
Source: PublicationPreSubmission
Source-ID: 92386880
Research output: Research - peer-review › Journal article – Annual report year: 2014