Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution of prey becomes complex and once again prey control becomes difficult. However, the joint effect of reduction in prey refuge and the presence of appropriate amount of additional food can control prey (pest) population from the system.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Centre for Ocean Life, Indian Statistical Institute
Contributors: Chakraborty, S., Tiwari, P. K., Sasmal, S., Biswas, S., Bhattacharya, S., Chattopadhyay, J.
Pages: 128-140
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Applied Mathematical Modelling
Volume: 47
ISSN (Print): 0307-904X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.68 SJR 0.876 SNIP 1.394
Web of Science (2017): Impact factor 2.617
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.03 SJR 1.139 SNIP 1.784
Web of Science (2016): Impact factor 2.35
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.67 SJR 1.199 SNIP 1.685
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.72 SJR 1.143 SNIP 1.9
Web of Science (2014): Impact factor 2.251
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.73 SJR 1.074 SNIP 1.974
Web of Science (2013): Impact factor 2.158
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.22 SJR 0.889 SNIP 1.811
Web of Science (2012): Impact factor 1.706
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.06 SJR 0.844 SNIP 1.548
Web of Science (2011): Impact factor 1.579
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1