Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

Publication: Research - peer-reviewJournal article – Annual report year: 2006

View graph of relations

Macroscopic aggregates (marine snow) contribute to new production and nutrient dynamics in the upper ocean and vertical fluxes of organic matter to the deep ocean. To test whether microorganisms play a significant role in phytoplankton aggregate formation we studied particle abundance and size as well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth and aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached bacteria depended on phytoplankton growth and aggregation dynamics. The community composition of especially attached bacteria significantly differed between the 2 algal cultures. Our study suggests that phytoplankton aggregation and vertical fluxes are closely linked to interactions between the marine phytoplankton and the ambient microbial community
Original languageEnglish
JournalAquatic Microbial Ecology
Publication date2006
Volume42
Issue1
Pages19-26
ISSN0948-3055
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 35
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 3472387