Integrity of clay till aquitards to DNAPL migration: Assessment using current and emerging characterization tools - DTU Orbit (30/12/2018)

Field investigations were carried out to determine the occurrence of tetrachloroethene (PCE) dense non-aqueous phase liquid (DNAPL), the source zone architecture and the aquitard integrity at a 30-50 year old DNAPL release site. The DNAPL source zone is located in the clay till unit overlying a limestone aquifer. The DNAPL source zone architecture was investigated through a multiple-lines-of-evidence approach using various characterization tools; the most favorable combination of tools for the DNAPL characterization was geophysical investigations, Membrane Interface Probe (MIP), core subsampling with quantification of chlorinated solvents, hydrophobic dye test with Sudan IV and Flexible Liner Underground Technologies (FLUTE) NAPL liners with activated carbon felt (FACT). While the occurrence of DNAPL was best determined by quantification of chlorinated solvents in soil samples supported by the hydrophobic dye tests (Sudan IV and NAPL FLUTE), the conceptual understanding of source zone architecture was greatly assisted by the indirect continuous characterization tools. Although mobile or high residual DNAPL (St >1%) only occurred in 11% of the source zone samples (intact cores), they comprised 86% of the total PCE mass. The data set, and associated data analysis, supported vertical migration of DNAPL through fractures in the upper part of the clay till, horizontal migration along high permeability features around the redox boundary in the clay till, and to some extent vertical migration through the fractures in the reduced part of the clay till aquitard to the underlying limestone aquifer. The aquitard integrity to DNAPL migration was found to be compromised at a thickness of reduced clay till of less than 2 m.
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.97 SJR 0.875 SNIP 1.014
Web of Science (2011): Impact factor 0.947
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.624 SNIP 0.672
Web of Science (2010): Impact factor 1.23
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.564 SNIP 0.843
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.743 SNIP 0.845
Scopus rating (2007): SJR 0.784 SNIP 1.202
Scopus rating (2006): SJR 0.584 SNIP 0.678
Scopus rating (2005): SJR 0.526 SNIP 0.811
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.656 SNIP 0.71
Scopus rating (2003): SJR 0.518 SNIP 0.748
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.65 SNIP 0.919
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.792 SNIP 1.072
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.598 SNIP 0.959
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.64 SNIP 1.164
Original language: English
Electronic versions:
Post_print_integrity_of_clay_till_aquitards_ASFJ.pdf. Embargo ended: 18/07/2018
DOIs:
10.1111/gwmr.12217
Research output: Research - peer-review › Journal article – Annual report year: 2017