Integration of a magnetocaloric heat pump in a low-energy residential building - DTU Orbit (23/12/2018)

Integration of a magnetocaloric heat pump in a low-energy residential building

The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, University of Southern Denmark, Aalborg University
Contributors: Johra, H., Filonenko, K., Heiselberg, P., Veje, C., Lei, T., Dallolio, S., Engelbrecht, K., Bahl, C.
Pages: 753-763
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Building Simulation
Volume: 11
Issue number: 4
ISSN (Print): 1996-3599
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.97 SJR 0.839 SNIP 1.239
Web of Science (2017): Impact factor 1.673
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.56 SJR 0.792 SNIP 0.994
Web of Science (2016): Impact factor 1.17
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.74 SJR 1.001 SNIP 1.156
Web of Science (2015): Impact factor 1.409
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.41 SJR 0.827 SNIP 1.228
Web of Science (2014): Impact factor 1.029
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.77 SJR 0.449 SNIP 0.648
Web of Science (2013): Impact factor 0.631
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.72 SJR 0.429 SNIP 0.745
Web of Science (2012): Impact factor 0.649
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 0.95 SJR 0.366 SNIP 0.846
Web of Science (2011): Impact factor 0.815