Integrating robust timetabling in line plan optimization for railway systems

We propose a heuristic algorithm to build a railway line plan from scratch that minimizes passenger travel time and operator cost and for which a feasible and robust timetable exists. A line planning module and a timetabling module work iteratively and interactively. The line planning module creates an initial line plan. The timetabling module evaluates the line plan and identifies a critical line based on minimum buffer times between train pairs. The line planning module proposes a new line plan in which the time length of the critical line is modified in order to provide more flexibility in the schedule. This flexibility is used during timetabling to improve the robustness of the railway system. The algorithm is validated on the DSB S-tog network of Copenhagen, which is a high frequency railway system, where overtakings are not allowed. This network has a rather simple structure, but is constrained by limited shunt capacity. While the operator and passenger cost remain close to those of the initially and (for these costs) optimally built line plan, the timetable corresponding to the finally developed robust line plan significantly improves the minimum buffer time, and thus the robustness, in eight out of ten studied cases.

General information
State: Published
Organisations: Department of Management Engineering, Management Science, Operations Research, Transport DTU, KU Leuven
Contributors: Burggraeve, S., Bull, S. H., Vansteenwegen, P., Lusby, R. M.
Pages: 134-160
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Transportation Research. Part C: Emerging Technologies
Volume: 77
ISSN (Print): 0968-090X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.17 SJR 2.293 SNIP 2.907
Web of Science (2017): Impact factor 3.968
BFI (2017): BFI-level 2
Scopus rating (2016): CiteScore 4.43 SJR 1.998 SNIP 2.638
Web of Science (2016): Impact factor 3.805
BFI (2016): BFI-level 2
Scopus rating (2015): CiteScore 4.23 SJR 2.026 SNIP 2.714
Web of Science (2015): Impact factor 3.075
Web of Science (2015): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2014): CiteScore 3.84 SJR 2.045 SNIP 3.169
Web of Science (2014): Impact factor 2.818
Web of Science (2014): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2013): CiteScore 4.01 SJR 1.851 SNIP 3.648
Web of Science (2013): Impact factor 2.82
BFI (2013): BFI-level 2
Scopus rating (2012): CiteScore 2.76 SJR 1.542 SNIP 2.823
Web of Science (2012): Impact factor 2.006
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2