Integrating ergonomics into engineering: Empirical evidence and implications for the ergonomist - DTU Orbit (17/03/2019)

Integrating ergonomics into engineering: Empirical evidence and implications for the ergonomist

Engineering design is a strong determinant of workplace ergonomics. A survey among 680 engineers in twenty Danish enterprises indicated that engineers are not aware that they influence the work environment of other people. Ergonomics had a low rating among engineers, perhaps because neither management nor safety organizations expressed any expectations in this area. The study further indicated that effects of ergonomics training in engineering schools were very limited. The engineering cultures in enterprises, together with other organizational factors, are suggested to be of greater importance than the professional training. The implications for industrial ergonomists might be an acknowledgement of the role as change agent when trying to integrate ergonomics into engineering. In doing so, they need also to acknowledge that engineers are widely different. They have different background and 'sensitivity' to ergonomics depending on their current engineering domain, tasks, organizational position and the industrial branch of their organization.

General information
State: Published
Organisations: Department of Management Engineering
Contributors: Broberg, O.
Pages: 353-366
Publication date: 2007
Peer-reviewed: Yes

Publication Information
Journal: Human Factors and Ergonomics in Manufacturing & Service Industries
Volume: 17
Issue number: 4
ISSN (Print): 1090-8471
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.16 SJR 0.417 SNIP 0.836
Web of Science (2017): Impact factor 0.917
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.13 SJR 0.391 SNIP 0.801
Web of Science (2016): Impact factor 0.761
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 0.78 SJR 0.374 SNIP 0.955
Web of Science (2015): Impact factor 0.462
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 0.62 SJR 0.309 SNIP 0.734
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 0.86 SJR 0.248 SNIP 0.796
Web of Science (2013): Impact factor 0.862
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 0.78 SJR 0.246 SNIP 1.284
Web of Science (2012): Impact factor 0.624
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 0.86 SJR 0.376 SNIP 0.935
Web of Science (2011): Impact factor 0.612
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.398 SNIP 0.842
Web of Science (2010): Impact factor 0.417
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.401 SNIP 0.687
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.165 SNIP 0.379
Scopus rating (2007): SJR 0.448 SNIP 1.062
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.285 SNIP 0.499
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.305 SNIP 0.671
Scopus rating (2004): SJR 0.376 SNIP 1.225
Scopus rating (2003): SJR 0.442 SNIP 0.677
Scopus rating (2002): SJR 0.357 SNIP 0.792
Scopus rating (2001): SJR 0.211 SNIP 0.745
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.403 SNIP 0.811
Scopus rating (1999): SJR 0.316 SNIP 0.435
Original language: English
Source: orbit
Source-ID: 188473
Research output: Research - peer-review ; Journal article – Annual report year: 2007