Integrated tunneling sensor for nanoelectromechanical systems

Publication: Research - peer-reviewJournal article – Annual report year: 2006

NullPointerException

View graph of relations

Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1 nm is essential, requiring the use of structures with a mobile electrode. At such small distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based on this analysis, a tunneling sensor is fabricated by Si micromachining technology and its proper operation is demonstrated. (c) 2006 American Institute of Physics.
Original languageEnglish
JournalApplied Physics Letters
Publication date2006
Volume89
Journal number17
Pages173101
ISSN0003-6951
DOIs
StatePublished

Bibliographical note

Copyright (2006) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

CitationsWeb of Science® Times Cited: 1

Keywords

  • ATOMIC-FORCE MICROSCOPY, FABRICATION, MASS DETECTION
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4771985