In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells - DTU Orbit (27/12/2018)

In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells

Three-dimensional titania network was in-situ constructed on Ti foil via sequential acid and hydrogen peroxide treatments. The titania network was pure anatase phase and homogeneously covered on the titanium grain surface, which largely enhanced the roughness of the Ti foil. The as-received Ti foil and the treated one were used as the flexible substrates of DSSCs, and energy conversion efficiencies of 3.74% and 4.98% were obtained, respectively. Such remarkable increment can be ascribed to the good electrical contact between the nanocrystalline TiO2 and the Ti foil, the improved electron percolation pathways and recombination inhibition of electrons in Ti substrate with triiodide ions in electrolyte. Flexible DSSCs based on the treated Ti foil showed relatively good mechanical stability, which exhibited 97.3% retention of the initial efficiency after twenty consecutive bending.

General information
State: Published
Organisations: Department of Chemistry, NanoChemistry, Organic Chemistry, Donghua University
Number of pages: 8
Pages: 210-217
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Applied Surface Science
Volume: 380
ISSN (Print): 0169-4332
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.22 SJR 1.093 SNIP 1.328
Web of Science (2017): Impact factor 4.439
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.37 SJR 0.958 SNIP 1.221
Web of Science (2016): Impact factor 3.87
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.13 SJR 0.89 SNIP 1.268
Web of Science (2015): Impact factor 3.15
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.96 SJR 0.948 SNIP 1.453
Web of Science (2014): Impact factor 2.711
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.78 SJR 0.96 SNIP 1.475
Web of Science (2013): Impact factor 2.538
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.26 SJR 0.913 SNIP 1.362
Web of Science (2012): Impact factor 2.112
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.27 SJR 0.908 SNIP 1.386
Web of Science (2011): Impact factor 2.103