Injection molded polymeric hard X-ray lenses

Injection molded polymeric hard X-ray lenses
A novel and economical approach for fabricating compound refractive lenses for the purpose of focusing hard X-rays is described. A silicon master was manufactured by UV-lithography and deep reactive ion etching (DRIE). Sacrificial structures were utilized, which enabled accurate control of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon energies of 17 keV. A 55 µm long line focus with a minimal waist of 770 nm (FWHM) and a total lens transmittance of 32% were measured. Due to its suitability for cheap mass production, this highly efficient optics may find widespread use in hard X-ray instruments.

General information
State: Published
Organisations: DTU Danchip, Neutrons and X-rays for Materials Physics, Department of Physics, Experimental Surface and Nanomaterials Physics, Department of Micro- and Nanotechnology, Silicon Microtechnology
Pages: 2804-2811
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Optical Materials Express
Volume: 5
Issue number: 12
ISSN (Print): 2159-3930
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 2.78 SJR 0.952 SNIP 1.167
Web of Science (2017): Impact factor 2.566
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 2.74 SJR 1.042 SNIP 1.23
Web of Science (2016): Impact factor 2.591
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 3.07 SJR 1.34 SNIP 1.351
Web of Science (2015): Impact factor 2.657
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.17 SJR 1.521 SNIP 1.623
Web of Science (2014): Impact factor 2.844
Scopus rating (2013): CiteScore 3.42 SJR 1.757 SNIP 2.357
Web of Science (2013): Impact factor 2.923
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.58 SJR 1.609 SNIP 1.774
Web of Science (2012): Impact factor 2.616
Web of Science (2012): Indexed yes
Web of Science (2011): Impact factor
Web of Science (2011): Indexed yes
Original language: English
Electronic versions:
one_5_12_2804.pdf
DOIs:
10.1364/OME.5.002804
Source: PublicationPreSubmission
Source-ID: 117920832
Research output: Research - peer-review > Journal article – Annual report year: 2015