Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

NullPointerException

View graph of relations

The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source.
Original languageEnglish
JournalOptical Society of America. Journal B: Optical Physics
Publication date2012
Volume29
Journal number10
Pages2875-2885
ISSN0740-3224
DOIs
StatePublished

Bibliographical note

This paper was published in JOSA B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-29-10-2875. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 12160209