Influence of processing and intrinsic polymer parameters on photochemical stability of polythiophene thin films

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

Intrinsic polymer parameters such as regio-regularity, molecular weight, and crystallinity play an important role when studying polymer stability. 18 different batches of poly-3-hexyl-thiophene (P3HT) were degraded in a solar simulator (AM1.5G, 1000 W/m2) and the degradation kinetics were monitored. The results suggest that the radical reaction responsible for the photodegradation takes place at terminal thiophene rings exposed at points were the conjugation is broken. This proposed mechanism is supported by the fact that stability scales with regio-regularity following the ratio of head-to-tail connected thiophene units. Annealing was found to relax the P3HT films and increase conjugation length and, in turn, increase stability observed as a delayed spectral blueshift caused by photochemical degradation. Crystallinity was found to play a minor role in terms of stability. Oxygen diffusion and light shielding effects were shown to have a negligible effect on the photochemical degradation rate. The results obtained in this work advance the understanding of polymer stability and will help improve the design of materials used for polymer solar cells resulting in longer lifetimes, which will push the technology closer to large-scale applications. © 2012 Elsevier Ltd. All rights reserved.
Original languageEnglish
JournalPolymer Degradation and Stability
Publication date2012
Volume97
Issue11
Pages2412-2417
ISSN0141-3910
DOIs
StatePublished

Bibliographical note

This work was supported by the Danish Strategic Research
Council (2104-07-0022), EUDP (j. no. 64009-0050) and PVERA-NET
(project acronym POLYSTAR).

CitationsWeb of Science® Times Cited: 10

Keywords

  • P3HT, Photooxidation, Organic photovoltaics, Photo-chemical stability, Degradation
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 12309589