Influence of near-field coupling from Ag surface plasmons on InGaN/GaN quantum-well photoluminescence - DTU Orbit (21/02/2019)

We have investigated the borderline between photoluminescence quenching and enhancement of InGaN/GaN quantum-wells due to Ag nanoparticles and their surface plasmon modes. By embedding Ag nanoparticles inside nanohole structures on the p-type layer GaN, luminescence quenching is observed. Increasing the distance between the nanoparticles and quantum-wells has shown to enhance the emission. We have found that the nano-structure geometry of the metal-semiconductor interface in the near-field of the quantum-wells plays a crucial role in determining whether the emitter performance is enhanced or degraded.

General information
State: Published
Organisations: Department of Photonics Engineering, Diode Lasers and LED Systems, Centre of Excellence for Silicon Photonics for Optical Communications, Huazhong University of Science and Technology, Meijo University
Contributors: Fadil, A., Iida, D., Chen, Y., Ou, Y., Kamiyama, S., Ou, H.
Pages: 213–216
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Luminescence
Volume: 175
ISSN (Print): 0022-2313
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.72 SJR 0.694 SNIP 1.086
Web of Science (2017): Impact factor 2.732
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.61 SJR 0.714 SNIP 1.122
Web of Science (2016): Impact factor 2.686
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.68 SJR 0.763 SNIP 1.193
Web of Science (2015): Impact factor 2.693
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.72 SJR 0.802 SNIP 1.364
Web of Science (2014): Impact factor 2.719
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.42 SJR 0.739 SNIP 1.228
Web of Science (2013): Impact factor 2.367
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.17 SJR 0.832 SNIP 1.265
Web of Science (2012): Impact factor 2.144
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.19 SJR 0.823 SNIP 1.262
Web of Science (2011): Impact factor 2.102
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1