Influence of mediators on laccase catalyzed radical formation in lignin - DTU Orbit (17/06/2018)

Influence of mediators on laccase catalyzed radical formation in lignin

Laccases (EC 1.10.3.2) catalyze oxidation of phenolic groups in lignin to phenoxyl radicals during reduction of O_2 to H_2O. Here, we examine the influence on this radical formation of mediators which are presumed to act by shuttling electrons between the laccase and the subunits in lignin that the enzyme cannot approach directly. Treatments of three different lignins with laccase-mediator-systems (LMS) including laccases derived from *Trametes versicolor* and *Myceliophthora thermophila*, respectively, and four individual mediators, 1-hydroxybenzotriazole (HBT), N-hydroxyphthalimide (HPI), 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were assessed by real time electron paramagnetic resonance measurements. Radical steady state concentrations and radical formation rates were quantified. LMS treatments with 500 μM N-OH type mediators (HPI or HBT) did not affect the lignin radical formation, but increased doses of those mediators (5 mM) surprisingly led to significantly decreased radical formation rates and lowered steady state radical concentrations. Laccase-TEMPO treatment at a 5 mM mediator dose was the only system that significantly increased steady state radical concentration and rate of radical formation in beech organosolv lignin. The data suggest that electron shuttling by mediators is not a significant general mechanism for enhancing laccase catalyzed oxidation of biorefinery lignin substrates, and the results thus provide a new view on laccase catalyzed lignin modification.

General information

State: Published
Organisations: Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, University of Copenhagen
Authors: Munk, L. (Intern), Andersen, M. L. (Ekstern), Meyer, A. S. (Intern)
Pages: 48-56
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information

Journal: Enzyme and Microbial Technology
Volume: 116
ISSN (Print): 0141-0229
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SJR 0.754 SNIP 0.944
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.83 SJR 0.774 SNIP 1.028
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.846 SNIP 0.95 CiteScore 2.63
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.063 SNIP 1.212 CiteScore 3.12
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.17 SNIP 1.377 CiteScore 3.2
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.166 SNIP 1.27 CiteScore 2.78
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.057 SNIP 1.262 CiteScore 2.74
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.207 SNIP 1.559
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.304 SNIP 1.504
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.214 SNIP 1.35
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.937 SNIP 1.259
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.908 SNIP 1.421
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.922 SNIP 1.436
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.857 SNIP 1.261
Scopus rating (2003): SJR 0.807 SNIP 1.208
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.878 SNIP 1.249
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.802 SNIP 1.188
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.891 SNIP 1.179
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.915 SNIP 1.199
Original language: English
ABTS, Electron paramagnetic resonance (EPR), HBT, HPI, Laccase-mediator systems, Myceliophthora thermophila, TEMPO, Trametes versicolor
DOIs: 10.1016/j.enzmictec.2018.05.009
Source: Scopus
Source-ID: 85047404099
Publication: Research - peer-review › Journal article – Annual report year: 2018