Influence of heat cost allocation on occupants' control of indoor environment in 56 apartments - DTU Orbit (07/12/2018)

Influence of heat cost allocation on occupants' control of indoor environment in 56 apartments: Studied with measurements, interviews and questionnaires

People who pay their energy bills individually based on meter readings tend to spend less energy than people who pay collectively e.g. based on floor areas. It has been hypothesised that these savings are an effect of lower indoor temperatures and ventilation rates during heating seasons. The aim of this paper was to study the indoor environment in buildings with collective and individual heat cost allocation plans, to investigate how the heat cost allocation influenced occupant behaviour and how occupants controlled the indoor environment.

The effects of the heat cost allocation type were studied by comparing indoor environmental measurements between two buildings: one with collective payment and one with individual payment. The measurements were collected at 5 min intervals at a central location in each of 56 apartments in Copenhagen, Denmark over a period of two months. Questionnaires and semi-structured interviews showed a strong influence of the heat cost allocation plan on the occupants' control strategies. Occupants whose heating bills were based on floor area focused on a healthy and comfortable indoor environment. Occupants whose heating bills were based on meter readings focused on energy conservation and heat cost savings at the expense of thermal comfort and air quality.

The differences in average temperature, average CO2 concentration and average vapour pressure were 2.8 °C, 161 ppm, and 93 Pa, respectively between apartments with collective and individual heat cost allocation.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics
Contributors: Andersen, S., Andersen, R. K., Olesen, B. W.
Number of pages: 8
Pages: 1-8
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Building and Environment
Volume: 101
ISSN (Print): 0360-1323
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 5.22 SJR 2.169 SNIP 2.534
 Web of Science (2017): Impact factor 4.539
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 4.51 SJR 1.998 SNIP 2.215
 Web of Science (2016): Impact factor 4.053
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 4.37 SJR 2.067 SNIP 2.463
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 4.14 SJR 1.887 SNIP 2.742
 Web of Science (2014): Impact factor 3.341
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 3.57 SJR 1.547 SNIP 2.551
 Web of Science (2013): Impact factor 2.7
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 3.06 SJR 1.293 SNIP 2.857
 Web of Science (2012): Impact factor 2.43