Influence of H2O on NO formation during char oxidation of biomass - DTU Orbit (31/01/2019)

Influence of H2O on NO formation during char oxidation of biomass
The present study investigates conversion of char-N to NO in mixtures of O2/N2 and in O2/H2O/N2. Biomass particles of spruce bark were combusted in an electrically heated single particle reactor at 900°C at various O2/H2O/N2 concentrations. NO concentrations of the product gases were measured during the char combustion stage. The conversion of char-N to NO was significantly higher with H2O as compared to without H2O in the gas. Additional fixed bed experiments were conducted to investigate the products of the reaction between H2O and spruce bark char. The results showed that NH3 is the primary product in the reaction between char-N and steam. These results explain the observation that more NO is formed during char combustion in the presence of steam: the char-N reacts partly with H2O to form NH3, which reacts further to NO.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Åbo Akademi University
Contributors: Karlström, O., Wu, H., Glarborg, P.
Pages: 1260-1265
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Fuel
Volume: 235
ISSN (Print): 0016-2361
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.4 SJR 1.891 SNIP 2.127
Web of Science (2017): Impact factor 4.908
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.9 SJR 1.736 SNIP 2.207
Web of Science (2016): Impact factor 4.601
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.46 SJR 1.781 SNIP 2.123
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.14 SJR 1.634 SNIP 2.294
Web of Science (2014): Impact factor 3.52
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.31 SJR 1.762 SNIP 2.544
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.99 SJR 1.813 SNIP 2.425
Web of Science (2012): Impact factor 3.357
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.1 SJR 2.041 SNIP 2.423
<table>
<thead>
<tr>
<th>Year</th>
<th>Impact Factor</th>
<th>SJR</th>
<th>SNIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>3.248</td>
<td>1.957</td>
<td>2.298</td>
</tr>
<tr>
<td>2010</td>
<td>3.604</td>
<td>1.985</td>
<td>2.27</td>
</tr>
<tr>
<td>2009</td>
<td>2.156</td>
<td>1.613</td>
<td>2.27</td>
</tr>
<tr>
<td>2008</td>
<td>1.596</td>
<td>1.364</td>
<td>1.86</td>
</tr>
<tr>
<td>2007</td>
<td>1.229</td>
<td>1.295</td>
<td>1.73</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>1.203</td>
<td>1.73</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>1.203</td>
<td>1.86</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>1.065</td>
<td>1.86</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>1.068</td>
<td>1.86</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>1.052</td>
<td>1.86</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>1.062</td>
<td>1.86</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.161</td>
<td>1.86</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>1.151</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Original language: English

DOIs: 10.1016/j.fuel.2018.08.156
Source: FindIt
Source-ID: 2438716117
Research output: Research - peer-review; Journal article – Annual report year: 2019