Influence of clay content on wave-induced liquefaction

This paper presents the results of an experimental study of the influence of clay content (CC) on liquefaction of seabed beneath progressive waves. Experiments were, for the most part, conducted with silt and silt-clay mixtures; in supplementary tests, sand-clay mixtures were used. Two types of measurements were carried out: (1) pore-water pressure measurements across the soil depth and (2) water-surface elevation measurements. These measurements were synchronized with video recordings of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height $H = 57.62$ to 18.3 cm, wave period $T = 51.6$ s, and water depth $h = 555$ cm. The experiments showed that the influence of CC on wave-induced liquefaction is very significant. Susceptibility of silt to liquefaction was increased with increasing CC up to CC 30% (which is clay-specific), beyond which the mixture of silt and clay was not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction-resistant under waves. For instance, sand with $d_{50} = 50.4$ mm was liquefied with CC 50%, whereas sand with $d_{50} = 50.17$ mm was partially liquefied with CC as small as 2.9%. Remarks are made as to how to check for liquefaction of clayey soils exposed to waves in real-life situations.

General information
State: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Istanbul Technical University
Contributors: Kirca, V. O., Sumer, B. M., Fredsøe, J.
Number of pages: 11
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume: 140
Issue number: 6
Article number: 04014024
ISSN (Print): 0733-950X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.87 SJR 0.913 SNIP 1.402
Web of Science (2017): Impact factor 1.481
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.48 SJR 0.876 SNIP 1.181
Web of Science (2016): Impact factor 1.494
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.23 SJR 0.782 SNIP 1.163
Web of Science (2015): Impact factor 1.316
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.05 SJR 0.641 SNIP 1.294
Web of Science (2014): Impact factor 0.792
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.29 SJR 0.681 SNIP 1.429
Web of Science (2013): Impact factor 1.107
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.83 SJR 0.837 SNIP 1.249
Web of Science (2012): Impact factor 1
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.24 SJR 0.753 SNIP 1.495
Web of Science (2011): Impact factor 0.794
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.891 SNIP 1.326
Web of Science (2010): Impact factor 0.603
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.867 SNIP 1.112
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.719 SNIP 1.337
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.952 SNIP 1.456
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.532 SNIP 0.933
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.61 SNIP 1.107
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.708 SNIP 1.333
Scopus rating (2003): SJR 0.945 SNIP 1.827
Scopus rating (2002): SJR 0.593 SNIP 0.889
Scopus rating (2001): SJR 0.76 SNIP 1.323
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.301 SNIP 1.268
Scopus rating (1999): SJR 0.301 SNIP 1.141
Original language: English
DOIs:
10.1061/(ASCE)WW.1943-5460.0000249
Source: PublicationPreSubmission
Source-ID: 93654433
Research output: Research - peer-review › Journal article – Annual report year: 2014