Inelastic vibrational signals in electron transport across graphene nanoconstrictions

We present calculations of the inelastic vibrational signals in the electrical current through a graphene nanoconstriction. We find that the inelastic signals are only present when the Fermi-level position is tuned to electron transmission resonances, thus, providing a fingerprint which can link an electron transmission resonance to originate from the nanoconstriction. The calculations are based on a novel first-principles method which includes the phonon broadening due to coupling with phonons in the electrodes. We find that the signals are modified due to the strong coupling to the electrodes, however, still remain as robust fingerprints of the vibrations in the nanoconstriction. We investigate the effect of including the full self-consistent potential drop due to finite bias and gate doping on the calculations and find this to be of minor importance.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Theoretical Nanoelectronics, Center for Nanostructured Graphene, QuantumWise A/S
Contributors: Gunst, T., Markussen, T., Stokbro, K., Brandbyge, M.
Number of pages: 7
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 93
Issue number: 24
Article number: 245415
ISSN (Print): 0163-1829

Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 3.318 SNIP 1.447
Web of Science (2010): Impact factor 3.774