Inelastic spectra to predict period elongation of structures under earthquake loading - DTU Orbit (12/12/2018)

Inelastic spectra to predict period elongation of structures under earthquake loading

Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi-parametric task, which is related to both epistemic and aleatory uncertainty. Along these lines, the objective of this paper is to investigate and quantify the elongated fundamental period of reinforced concrete structures using inelastic response spectra defined on the basis of the period shift ratio ($\frac{T_{\text{in}}}{T_{\text{el}}}$). Nonlinear oscillators of varying yield strength (expressed by the force reduction factor, R_y), post-yield stiffness (η_y) and hysteretic laws are examined for a large number of strong motions. Constant-strength, inelastic spectra in terms of $\frac{T_{\text{in}}}{T_{\text{el}}}$ are calculated to assess the extent of period elongation for various levels of structural inelasticity. Moreover, the influence that structural characteristics (R_y, η_y and degrading level) and strong-motion parameters (epicentral distance, frequency content and duration) exert on period lengthening are studied. Determined by regression analyses of the data obtained, simplified equations are proposed for period lengthening as a function of R_y and T_{el}. These equations may be used in the framework of the earthquake record selection and scaling.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Structural Engineering, Aristotle University of Thessaloniki
Contributors: Katsanos, E., Sextos, A.
Pages: 1765-1782
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Earthquake Engineering and Structural Dynamics
ISSN (Print): 0098-8847
Ratings:
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 3.35 SJR 1.997 SNIP 2.28
- Web of Science (2017): Impact factor 2.807
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 2.91 SJR 2.244 SNIP 2.237
- Web of Science (2016): Impact factor 1.974
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 3.08 SJR 2.681 SNIP 2.741
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 3.25 SJR 2.976 SNIP 2.935
- Web of Science (2014): Impact factor 2.305
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 2.93 SJR 2.449 SNIP 2.756
- Web of Science (2013): Impact factor 1.951
- ISI indexed (2013): ISI indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 2.19 SJR 2.705 SNIP 2.702
- Web of Science (2012): Impact factor 1.898
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 2
- Scopus rating (2011): CiteScore 2.46 SJR 2.621 SNIP 2.48
- Web of Science (2011): Impact factor 1.778
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.168 SNIP 2.129
Web of Science (2010): Impact factor 1.403
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.28 SNIP 2.175
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.349 SNIP 2.045
Scopus rating (2007): SJR 2.142 SNIP 2.353
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.641 SNIP 2.046
Scopus rating (2005): SJR 1.759 SNIP 2.838
Scopus rating (2004): SJR 1.937 SNIP 2.364
Scopus rating (2003): SJR 1.319 SNIP 1.817
Scopus rating (2002): SJR 1.948 SNIP 2.14
Scopus rating (2001): SJR 0.966 SNIP 1.814
Scopus rating (2000): SJR 1.011 SNIP 1.356
Scopus rating (1999): SJR 1.027 SNIP 0.99
Original language: English
Keywords: Period elongation, Inelastic spectra, Nonlinear response history analyses, Earthquake strong ground motions, Force reduction factor
DOIs:
10.1002/eqe.2554
Source: PublicationPreSubmission
Source-ID: 105169218
Research output: Research - peer-review › Journal article – Annual report year: 2015