Induced migration of fines during waterflooding in communicating layer-cake reservoirs - DTU Orbit (03/01/2019)

Induced migration of fines during waterflooding in communicating layer-cake reservoirs

The effects of fines migration induced by injection of water with a different salinity than the reservoir brine are incorporated into the upscaling model for waterflooding in a layer cake reservoir with good communication between the layers. Mobilization and re-capturing of the reservoir fines may give rise to reduction of the permeability in water swept zones, which subsequently leads to the diversion of water flow from the initially more permeable layers to the less permeable ones. As a result, the water cut at the producer is decreased, and the oil recovery is increased. On the other hand, more energy for the pressure drop is required to maintain a constant flow rate. These effects are studied within a new upscaling model developed previously (Zhang et al., 2011). In a communicating layer cake reservoir, higher end-point mobility ratio (water to oil) leads to more crossflow between layers and lowers the water sweep efficiency. However, this ratio facilitates the fluid diversion caused by the fines migration, leading to a more efficient enhanced oil recovery. The positive contribution from the mobility ratio to the increased oil recovery due to fines migration seems to be limited.

General information

State: Published
Organisations: CERE – Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering
Contributors: Yuan, H., Shapiro, A.
Pages: 618-626
Publication date: 2011
Peer-reviewed: Yes

Publication information

Journal: Journal of Petroleum Science and Engineering
Volume: 78
Issue number: 3-4
ISSN (Print): 0920-4105
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.8 SJR 0.782 SNIP 1.64
Web of Science (2017): Impact factor 2.382
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.56 SJR 0.701 SNIP 1.675
Web of Science (2016): Impact factor 1.873
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.38 SJR 0.74 SNIP 1.653
Web of Science (2015): Impact factor 1.655
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.95 SJR 0.663 SNIP 1.759
Web of Science (2014): Impact factor 1.416
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.73 SJR 0.76 SNIP 1.85
Web of Science (2013): Impact factor 1.096
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.42 SJR 0.677 SNIP 1.609
Web of Science (2012): Impact factor 0.997
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Keywords: Layer-cake reservoir, Fines migration, Enhanced oil recovery, Crossflow, Low salinity waterflooding

Electronic versions:
Induced_migration_of_fines_during_waterflooding_in_communicating_layer-cake_reservoirs.pdf

DOIs:
10.1016/j.petrol.2011.08.003

Source: orbit
Source-ID: 285200
Research output: Research - peer-review › Journal article – Annual report year: 2011