Documents

DOI

View graph of relations

Vertical migration is the most widespread migration in the aquatic world, yet the mechanisms limiting the extent of this behavior are largely unknown. In the Baltic Sea, some Atlantic cod Gadus morhua perform vertical foraging migrations into severely hypoxic demersal zones where aerobic metabolism is insufficient to cover energy requirements. After foraging, the fish return to better oxygenated waters for physiological recovery and digestion. To test the influence of phenotypic variation in aerobic scope (AS; the difference between the maximum and the minimum metabolic rate) on the capacity to migrate into severely hypoxic zones, we incorporated AS into a state-dependent individual-based model simulating vertical foraging migrations of G. morhua. We found little effect of individual variation in AS on the capacity for vertical migration when the zone used for physiological recovery was normoxic. In contrast, when there was moderate hypoxia (30% air saturation, O-2sat) in the zone used for physiological recovery, the high AS phenotype had a clear advantage because it could forage 3-4 times longer in the severely hypoxic (16% O-2sat, i.e. below the threshold for aerobic metabolism of the species) demersal zone compared to the low AS phenotype. Thus, phenotypic variation in AS is only important when there is moderate hypoxia in the zone used for physiological recovery, suggesting that the influence of AS variation on the capacity for vertical migration is context dependent. We propose that elevated AS may be evolutionarily favorable when hypoxia prevails in the water column.
Original languageEnglish
Book seriesMarine Ecology Progress Series
Volume599
Pages (from-to)201-208
ISSN1616-1599
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0

    Keywords

  • ECOLOGY, MARINE, OCEANOGRAPHY, POSTHYPOXIC OXYGEN-CONSUMPTION, GADUS-MORHUA, SWIMMING PERFORMANCE, MARINE TELEOSTS, METABOLIC SCOPE, RAINBOW-TROUT, BALTIC SEA, TEMPERATURE, BEHAVIOR, ONCORHYNCHUS, Physiology, Behavior, Baltic Sea, Bioenergetics, Aerobic scope, Hypoxia, Gadus morhua, Individual-based model
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 151913123