Individual transferable quotas, does one size fit all?: Sustainability analysis of an alternative model for quota allocation in a small-scale coastal fishery

The introduction of vessel-based Individual Transferable Quotas (ITQs) in Danish demersal fisheries in 2007 caused significant structural changes in the fleet, towards fewer and larger vessels deploying otter trawls. Mainly smaller coastal vessels deploying Danish seines and gillnets reduced in numbers. The ecosystem effects of this structural change were investigated by comparing the sustainability of a local, small-scale, coastal fishery (Thorupstrand) using Danish seines and gillnets with that of demersal trawling by larger vessels using the same fishing grounds. The fisheries were compared using six ecological and socio-economic indicators: 1) discards (food web), 2) by-catch incidences (food web/biodiversity), 3) seabed impacts, 4) fuel use efficiency, 5) quality of fish landed (food provision), and 6) social and cultural gains and drawbacks (social and cultural features). Except for by-catch of vulnerable species, the fisheries using Danish seines and gillnets scored better in all indicators when compared to otter trawls. Additional commercial and cultural benefits of establishing a local fishery guild with share-owned quotas and land-based facilities were investigated. The results and lessons learned are discussed in the context of an ecosystem approach to fisheries management and the current reform of the common fisheries policy of the European Union.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Ecosystem based Marine Management, Aarhus University
Contributors: Dinesen, G. E., Rathje, I. W., Højrup, M., Bastardie, F., Larsen, F., Sørensen, T. K., Hoffmann, E., Eigaard, O. R.
Pages: 23-31
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Marine Policy
Volume: 88
ISSN (Print): 0308-597X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.52 SJR 1.109 SNIP 1.112
Web of Science (2017): Impact factor 2.109
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.7 SJR 1.376 SNIP 1.167
Web of Science (2016): Impact factor 2.235
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.07 SJR 1.611 SNIP 1.387
Web of Science (2015): Impact factor 2.453
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.09 SJR 1.457 SNIP 1.544
Web of Science (2014): Impact factor 2.61
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.71 SJR 1.49 SNIP 1.604
Web of Science (2013): Impact factor 2.621
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.54 SJR 1.35 SNIP 1.477
Web of Science (2012): Impact factor 2.23
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes