Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials - DTU Orbit (09/12/2018)

Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials

The aim of this paper is to characterise the fibre orientation in unidirectional fibre reinforced polymers, namely glass and carbon fibre composites. The compression strength of the composite is related to the orientation of the fibres. Thus the orientation is essential when designing materials for wind turbine blades. The calculation of the fibre orientation distribution is based on segmenting the individual fibres from volumes that have been acquired through X-ray tomography. The segmentation method presented in this study can accurately extract individual fibres from low contrast X-ray scans of composites with high fibre volume fraction. From the individual fibre orientations, it is possible to obtain results which are independent of the scanning quality. The compression strength for both composites is estimated from the average fibre orientations and is found to be of the same order of magnitude as the measured values.

General information
State: Published
Pages: 83–92
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Composites Part A: Applied Science and Manufacturing
Volume: 97
ISSN (Print): 1359-835X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.92 SJR 1.539 SNIP 2.105
Web of Science (2017): Impact factor 4.514
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.82 SJR 1.478 SNIP 2.146
Web of Science (2016): Impact factor 4.075
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.09 SJR 1.532 SNIP 2.219
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.08 SJR 1.703 SNIP 2.568
Web of Science (2014): Impact factor 3.071
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.92 SJR 1.635 SNIP 2.86
Web of Science (2013): Impact factor 3.012
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.36 SJR 1.582 SNIP 2.752
Web of Science (2012): Impact factor 2.744
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.23 SJR 1.48 SNIP 2.557
Web of Science (2011): Impact factor 2.695
ISI indexed (2011): ISI indexed yes