Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram - DTU Orbit (13/12/2018)

Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram

Recent auditory brain stem response measurements in tinnitus subjects with normal audiograms indicate the presence of hidden hearing loss that manifests as reduced neural output from the cochlea at high sound intensities, and results from mice suggest a link to deafferentation of auditory nerve fibers. As deafferentation would lead to deficits in hearing performance, the present study investigates whether tinnitus patients with normal hearing thresholds show impairment in intensity discrimination compared to an audiometrically matched control group. Intensity discrimination thresholds were significantly increased in the tinnitus frequency range, consistent with the hypothesis that auditory nerve fiber deafferentation is associated with tinnitus.

General information
State: Published
Organisations: Department of Electrical Engineering, Hearing Systems, Otto von Guericke University Magdeburg, University College London
Contributors: Epp, B., Hots, J., Verhey, J. L., Schaette, R.
Pages: EL196-EL201
Publication date: 2012
Peer-reviewed: Yes

Publication information
Volume: 132
Issue number: 2
ISSN (Print): 0001-4966
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.77 SJR 0.695 SNIP 1.224
Web of Science (2017): Impact factor 1.605
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.83 SJR 0.819 SNIP 1.271
Web of Science (2016): Impact factor 1.547
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.77 SJR 0.854 SNIP 1.416
Web of Science (2015): Impact factor 1.572
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.8 SJR 0.887 SNIP 1.402
Web of Science (2014): Impact factor 1.503
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2 SJR 0.707 SNIP 1.937
Web of Science (2013): Impact factor 1.555
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.75 SJR 0.771 SNIP 1.619
Web of Science (2012): Impact factor 1.646
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.68 SJR 0.686 SNIP 1.624
Web of Science (2011): Impact factor 1.55