NullPointerException

View graph of relations

For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads.
During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is
essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model predicts the experimental transverse strains well when a tied boundary condition at the tool/part interface is used and the tool thermal expansion is taken into account. However, the CHILE approach is shown to overestimate residual strains after demoulding because of the shortcomings of the model in considering viscoelastic effects. The process-induced strain magnitude furthermore increases when the laminate thickness
was increased, owing mainly to a decrease in through-thickness internal transverse stresses.
Original languageEnglish
JournalWind Energy
Publication date2012
Volume16
Journal number8
Pages1241-1257
ISSN1095-4244
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 2

Keywords

  • Blades, Composites, Manufacturing, Distortions, Numerical analysis, Process monitoring, Curing
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 10393813