In situ electrical and thermal monitoring of printed electronics by two-photon mapping - DTU Orbit (07/12/2018)

In situ electrical and thermal monitoring of printed electronics by two-photon mapping

Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed electronic devices relies principally on the carrier mobility and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid, in situ, non-destructive and low-cost testing method is needed. In this study, we demonstrate that nonlinear optical microscopy is a promising technique to achieve this goal. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence and second harmonic response.

We show that, in our experimental conditions, it is possible to relate the total amount of photoluminescence detected to important material properties such as the charge carrier density and the molecular packing of the printed polymer material, all with a spatial resolution of 400 nm. Importantly, this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Organic Energy Materials, ICFO - Institute of Photonic Sciences
Contributors: Pastorelli, F., Accanto, N., Jørgensen, M., van Hulst, N. F., Krebs, F. C.
Number of pages: 6
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Scientific Reports
Volume: 7
Article number: 3787
ISSN (Print): 2045-2322
Ratings:

- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 4.36 SJR 1.533 SNIP 1.245
- Web of Science (2017): Impact factor 4.122
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 4.63 SJR 1.692 SNIP 1.354
- Web of Science (2016): Impact factor 4.259
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 5.3 SJR 2.034 SNIP 1.597
- Web of Science (2015): Impact factor 5.228
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 4.75 SJR 2.163 SNIP 1.554
- Web of Science (2014): Impact factor 5.578
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 4.06 SJR 1.998 SNIP 1.57
- Web of Science (2013): Impact factor 5.078
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 2.44 SJR 1.531 SNIP 0.962
- Web of Science (2012): Impact factor 2.927
- ISI indexed (2012): ISI indexed yes