In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy - DTU Orbit (12/12/2018)

In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.8Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth and delamination only accelerates when sintering occurs.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Ceramic Engineering & Science, Imaging and Structural Analysis, Paul Scherrer Institute
Pages: 3019-3025
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Journal of the European Ceramic Society
Volume: 34
Issue number: 12
ISSN (Print): 0955-2219
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 3.55 SJR 1.068 SNIP 1.698
 Web of Science (2017): Impact factor 3.794
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 3.25 SJR 1.142 SNIP 1.888
 Web of Science (2016): Impact factor 3.454
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 3.03 SJR 1.135 SNIP 1.817
 Web of Science (2015): Impact factor 2.933
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 3.16 SJR 1.163 SNIP 2.083
 Web of Science (2014): Impact factor 2.947
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 2.57 SJR 1.111 SNIP 1.79
 Web of Science (2013): Impact factor 2.307
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 2.81 SJR 1.293 SNIP 2.207
 Web of Science (2012): Impact factor 2.36
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 2.83 SJR 1.343 SNIP 2.195
 Web of Science (2011): Impact factor 2.353
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.383 SNIP 1.93
Web of Science (2010): Impact factor 2.575
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.374 SNIP 1.712
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.139 SNIP 1.627
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.212 SNIP 1.745
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.22 SNIP 1.665
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.095 SNIP 1.633
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.055 SNIP 1.743
Scopus rating (2003): SJR 1.151 SNIP 1.496
Scopus rating (2002): SJR 1.101 SNIP 1.184
Scopus rating (2001): SJR 1.236 SNIP 1.593
Scopus rating (2000): SJR 0.829 SNIP 1.179
Scopus rating (1999): SJR 1.11 SNIP 1.182

Original language: English
Keywords: Sintering, Tomography, Multi-layer, Crack growth, Delamination

Electronic versions:

DOIs:
10.1016/j.jeurceramsoc.2014.04.029

Source: FindIt
Source-ID: 267505066
Research output: Research - peer-review › Journal article – Annual report year: 2014