Impurity transport studies at Wendelstein 7-X by means of x-ray imaging spectrometer measurements

This paper reports on the effect of on- and off-axis heating power deposition on the impurity confinement in purely electron cyclotron resonance heated He plasmas on the stellarator Wendelstein 7-X. Therefore, impurity transport times τ_I have been determined after Fe impurity injections by laser ablations and monitoring the temporal impurity emissivities by the x-ray imaging spectrometer HR-XIS. A significant increase of τ_I has been observed when changing the power deposition from on- to off-axis heating with energy confinement times τ_E being mainly unaffected. In addition, the scaling of impurity transport properties with respect to a variation of heating power P_{ECRH} and electron density n_e has been investigated by keeping the heating power deposition on-axis. The observed τ_I scaling compares well to known τ_I scaling laws observed in other machines. A comparison of τ_I and τ_E yields an averaged ratio of $\tau_E/\tau_I = 1.3$ and transport times in the range of $\tau_I = 40\text{–}130$ ms and $\tau_E = 40\text{–}190$ ms. Comparing those absolute values to neoclassical predictions supports the recently observed nature of anomalous transport in Wendelstein 7-X, given within the up to now investigated operational parameters.

General information
State: Published
Organisations: Department of Physics, Max-Planck-Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Laboratorio Nacional de Fusión, Princeton Plasma Physics Laboratory, Auburn University
Number of pages: 8
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Plasma Physics and Controlled Fusion
Volume: 61
Issue number: 1
Article number: 014030
ISSN (Print): 0741-3335
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.74 SJR 0.69 SNIP 1.243
Web of Science (2017): Impact factor 3.032
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1 SJR 1.433 SNIP 1.258
Web of Science (2016): Impact factor 2.392
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.1 SJR 1.314 SNIP 1.345
Web of Science (2015): Impact factor 2.404
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.61 SJR 1.542 SNIP 1.346
Web of Science (2014): Impact factor 2.186
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.54 SJR 1.2 SNIP 1.253
Web of Science (2013): Impact factor 2.386
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.63 SJR 1.453 SNIP 1.201
Web of Science (2012): Impact factor 2.369
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.69 SJR 1.496 SNIP 1.591
Web of Science (2011): Impact factor 2.731
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.468 SNIP 1.408
Web of Science (2010): Impact factor 2.466
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.589 SNIP 1.324
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.845 SNIP 1.569
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.927 SNIP 1.374
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.844 SNIP 1.556
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.756 SNIP 1.54
Scopus rating (2004): SJR 2.246 SNIP 1.382
Scopus rating (2003): SJR 2.135 SNIP 1.253
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.668 SNIP 1.058
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.679 SNIP 1.233
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.974 SNIP 1.097
Scopus rating (1999): SJR 2.001 SNIP 1.471
Original language: English
Keywords: Impurity transport, Impurity confinement, Energy confinement, Imaging spectrometer, Laser blow-off, Plasma physics
Electronic versions:
DOIs:
10.1088/1361-6587/aaeb74

Bibliographical note
Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Source: FindIt
Source-ID: 2440933439
Research output: Research - peer-review ; Journal article – Annual report year: 2019