Improving RCPC codes in rate-adaptive atmospheric optical wireless communications systems - DTU Orbit (14/02/2019)

Improving RCPC codes in rate-adaptive atmospheric optical wireless communications systems

In this paper, we analyse the performance of rate-compatible punctured convolutional (RCPC) codes for wireless optical communications systems. For these environments, a novel hybrid RCPC coding scheme with a modified puncturing matrix is proposed based on the insertion of variable silence periods. This transmission technique achieves better bit-error rate results than conventional RCPC and convolutional coding schemes, in agreement to the obtained increase in the peak-to-average optical power ratio.

General information
State: Published
Organisations: University of Málaga
Pages: 879–889
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Wireless Personal Communications
Volume: 69
ISSN (Print): 0929-6212
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.36 SJR 0.26 SNIP 0.803
Web of Science (2017): Impact factor 1.2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.12 SJR 0.289 SNIP 0.732
Web of Science (2016): Impact factor 0.951
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.94 SJR 0.261 SNIP 0.754
Web of Science (2015): Impact factor 0.701
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.96 SJR 0.246 SNIP 0.856
Web of Science (2014): Impact factor 0.653
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.99 SJR 0.267 SNIP 1.009
Web of Science (2013): Impact factor 0.979
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.73 SJR 0.247 SNIP 0.724
Web of Science (2012): Impact factor 0.428
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.9 SJR 0.262 SNIP 0.818
Web of Science (2011): Impact factor 0.458
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.264 SNIP 0.646
Web of Science (2010): Impact factor 0.507
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.257 SNIP 0.623
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.216 SNIP 0.391
Scopus rating (2007): SJR 0.239 SNIP 0.608
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.291 SNIP 0.614
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.327 SNIP 0.562
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.3 SNIP 0.666
Scopus rating (2003): SJR 0.35 SNIP 0.618
Scopus rating (2002): SJR 0.714 SNIP 0.507
Scopus rating (2001): SJR 1.57 SNIP 1.574
Scopus rating (2000): SJR 0.881 SNIP 1.026
Scopus rating (1999): SJR 1.014 SNIP 0.6
Original language: English
Keywords: Optical communications, Rate-compatible, Punctured, Convolutional coding, Variable silence periods, Peak-to-average optical power ratio
DOIs:
10.1007/s11277-012-0617-3
Source: PublicationPreSubmission
Source-ID: 111828247
Research output: Research - peer-review › Journal article – Annual report year: 2013