Improving Loop Dependence Analysis

Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve the quality of that information by reusing the information given by the programmer for parallelization. We have implemented a prototype based on GCC into which we also add a new optimization pass. Our approach improves the amount of correctly classified dependencies resulting in 46% average improvement in single-thread performance for kernel benchmarks compared to GCC 6.1.

General information
- **State**: Published
- **Organisations**: Formal Methods, Department of Applied Mathematics and Computer Science, Embedded Systems Engineering
- **Contributors**: Jensen, N. B., Karlsson, S.
- **Number of pages**: 24
- **Pages**: 1-24
- **Publication date**: 2017
- **Peer-reviewed**: Yes

Publication information
- **Journal**: ACM Transactions on Architecture and Code Optimization
- **Volume**: 14
- **Issue number**: 3
- **ISSN (Print)**: 1544-3566
- **Ratings**:
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 1.84 SJR 0.301 SNIP 1.005
 - Web of Science (2017): Impact factor 1.131
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 1.61 SJR 0.298 SNIP 1.112
 - Web of Science (2016): Impact factor 1.636
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 1.42 SJR 0.34 SNIP 1.102
 - Web of Science (2015): Impact factor 0.585
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 1.35 SJR 0.316 SNIP 1.109
 - Web of Science (2014): Impact factor 0.503
 - BFI (2013): BFI-level 1
 - Scopus rating (2013): CiteScore 1.45 SJR 0.323 SNIP 1.154
 - Web of Science (2013): Impact factor 0.597
 - BFI (2012): BFI-level 1
 - Scopus rating (2012): CiteScore 1.45 SJR 0.308 SNIP 0.988
 - Web of Science (2012): Impact factor 0.684
 - BFI (2011): BFI-level 1
 - Scopus rating (2011): CiteScore 1.34 SJR 0.415 SNIP 1.177
 - Web of Science (2011): Impact factor 0.568
 - BFI (2010): BFI-level 1
 - Scopus rating (2010): SJR 0.289 SNIP 0.837
 - Web of Science (2010): Impact factor 0.824
 - BFI (2009): BFI-level 1
 - Scopus rating (2009): SJR 0.359 SNIP 1.406
 - BFI (2008): BFI-level 1
 - Scopus rating (2008): SJR 0.454 SNIP 1.295
 - Scopus rating (2007): SJR 0.333 SNIP 1.104
 - Scopus rating (2006): SJR 0.43 SNIP 1.843