Improved methods for predicting peptide binding affinity to MHC class II molecules

Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC class II peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA- DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. This article is protected by copyright. All rights reserved.

General information
State: Published
Organisations: Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, Universidad Nacional de San Martin, University of Copenhagen, La Jolla Institute for Allergy & Immunology
Contributors: Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., Nielsen, M.
Pages: 394-406
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Immunology
Volume: 154
Issue number: 3
ISSN (Print): 0019-2805
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.72 SJR 1.69 SNIP 0.938
Web of Science (2017): Impact factor 3.358
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.74 SJR 1.964 SNIP 0.965
Web of Science (2016): Impact factor 3.701
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.83 SJR 2.075 SNIP 0.965
Web of Science (2015): Impact factor 4.078
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.61 SJR 2.048 SNIP 1.043
Web of Science (2014): Impact factor 3.795
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.97 SJR 2.086 SNIP 1.084
Web of Science (2013): Impact factor 3.735
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.94 SJR 1.941 SNIP 1.04
Web of Science (2012): Impact factor 3.705
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.75 SJR 1.884 SNIP 0.992
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.121 SNIP 0.912
Web of Science (2010): Impact factor 3.302
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.122 SNIP 0.924
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.111 SNIP 0.922
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.122 SNIP 0.965
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.122 SNIP 0.893
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.673 SNIP 0.921
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.44 SNIP 0.798
Scopus rating (2003): SJR 1.345 SNIP 0.836
Scopus rating (2002): SJR 0.121 SNIP 0.787
Scopus rating (2001): SJR 0.121 SNIP 0.755
Scopus rating (2000): SJR 0.162 SNIP 0.836
Scopus rating (1999): SJR 0.107 SNIP 0.823
Original language: English
Keywords: MHC binding specificity, T-cell epitope, Affinity predictions, Immunogenic peptides, Peptide-MHC binding
Electronic versions:
Jensen_et_al_2018_Immunology.pdf. Embargo ended: 07/01/2019
DOIs:
10.1111/imm.12889
Source: Findit
Source-ID: 2395320988
Research output: Research - peer-review › Journal article – Annual report year: 2018