Improved current transport properties of post annealed Y1Ba2Cu3O7-x thin films using Ag doping

The influence of Ag doping on the transport properties of Y1Ba2Cu3O7–x thin films prepared by Y, BaF2, and Cu co-evaporation and optimized ex situ post annealing has been investigated. Both undoped and Ag doped films have values of T_c above 90 K, but J_c (77 K) is highly dependent on the nominal thickness (t_{nom}) of the as-deposited film. For undoped films with $t_{nom} > 106 \text{A/cm}^2$ decreases monotonically with increasing film thickness. Above 300 nm J_c (77 K) decreases rapidly to values below $5 \times 10^5 \text{A/cm}^2$. Ag doped films with $t_{nom} \geq 200 \text{ nm}$ have higher J_c (77 K) values than those of undoped films. Ag doped films have a maximum in J_c (77 K) around 250 nm. For the undoped films, there is a large decrease in J_c (77 K) for Ag doped films with $t_{nom} \geq 300 \text{ nm}$. It was found that the higher values of J_c (77 K) for the Ag doped films were due to a better epitaxial growth of the YBCO compound. The low values of J_c (77 K) for both undoped and Ag doped single layer films with $t_{nom} \geq 300 \text{ nm}$ were found to be due to the absence of 1–2–4 inclusions in these films. Based on these findings high J_c (77 K) films with $t_{nom} > 300 \text{ nm}$ were grown by successive deposition and annealing of films with t_{nom}.
Web of Science (2012): Impact factor 2.21
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.24 SJR 1.374 SNIP 1.3
Web of Science (2011): Impact factor 2.168
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.484 SNIP 1.204
Web of Science (2010): Impact factor 2.079
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.51 SNIP 1.237
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.644 SNIP 1.326
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.695 SNIP 1.387
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.944 SNIP 1.667
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.055 SNIP 1.605
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.128 SNIP 1.591
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.078 SNIP 1.532
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.184 SNIP 1.7
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.147 SNIP 1.554
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.009 SNIP 1.53
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.973 SNIP 1.486
Original language: English
Electronic versions:
sager.pdf
DOIs:
10.1063/1.361473
URLs:
http://link.aip.org/link/?JAPIAU/79/7062/1

Bibliographical note
Copyright (1996) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Source: orbit
Source-ID: 175235
Research output: Research - peer-review › Journal article – Annual report year: 1996