Important role of screening the electron-hole exchange interaction for the optical properties of molecules near metal surfaces - DTU Orbit (04/03/2019)

Important role of screening the electron-hole exchange interaction for the optical properties of molecules near metal surfaces

Optical experiments on nanostructures such as molecules, one- or two-dimensional materials, are often performed with the nanostructures in close proximity of a substrate or some other polarizable media. In this case, the Bethe-Salpeter equation (BSE) can be used to calculate the optical excitations of the nanostructure by including the effect of the substrate via the screened electron-hole interaction. Here we show, that in such an approach, where the states of the substrate are not explicitly included in the BSE Hamiltonian but only enter through the screened Coulomb interaction, it is important also to screen the electron-hole exchange interaction. For the case of molecules like benzene physisorbed on the metallic Au(111) surface, the screening of the exchange interaction by the substrate redshifts the lowest optical transition by up to 300 meV. Furthermore, the screening of the exchange is essential in order to obtain the correct ordering of the size of quasiparticle and optical energy gap.

General information
State: Published
Organisations: Department of Physics, Theoretical Atomic-scale Physics, Center for Nanostructured Graphene
Contributors: Deilmann, T., Thygesen, K. S.
Number of pages: 5
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 99
Issue number: 4
Article number: 045133
ISSN (Print): 1098-0121
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes