Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Standard

Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm. / Loosvelt, Lien; Peters, Jan; Skriver, Henning; De Baets, Bernard; Verhoest, Niko E. C.

In: I E E E Transactions on Geoscience and Remote Sensing, Vol. 50, No. 10, 2012, p. 4185-4200.

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Harvard

APA

CBE

MLA

Vancouver

Author

Loosvelt, Lien; Peters, Jan; Skriver, Henning; De Baets, Bernard; Verhoest, Niko E. C. / Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm.

In: I E E E Transactions on Geoscience and Remote Sensing, Vol. 50, No. 10, 2012, p. 4185-4200.

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Bibtex

@article{068bc66952544ed2a77fd0b1d1a4118b,
title = "Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm",
keywords = "Classification unvertainty, Entropy, Input reduction, Land cover, Polarimetric features, Polarimetric synthetic aperture radar (SAR), Prediction probabilities, Random forests",
publisher = "I E E E",
author = "Lien Loosvelt and Jan Peters and Henning Skriver and {De Baets}, Bernard and Verhoest, {Niko E. C.}",
year = "2012",
doi = "10.1109/TGRS.2012.2189012",
volume = "50",
number = "10",
pages = "4185--4200",
journal = "I E E E Transactions on Geoscience and Remote Sensing",
issn = "0196-2892",

}

RIS

TY - JOUR

T1 - Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm

A1 - Loosvelt,Lien

A1 - Peters,Jan

A1 - Skriver,Henning

A1 - De Baets,Bernard

A1 - Verhoest,Niko E. C.

AU - Loosvelt,Lien

AU - Peters,Jan

AU - Skriver,Henning

AU - De Baets,Bernard

AU - Verhoest,Niko E. C.

PB - I E E E

PY - 2012

Y1 - 2012

N2 - Although the use of multidate polarimetric synthetic aperture radar (SAR) data for highly accurate land cover classification has been acknowledged in the literature, the high dimensionality of the data set remains a major issue. This study presents two different strategies to reduce the number of features in multidate SAR data sets: an accuracy-oriented reduction and an efficiency-oriented reduction. For both strategies, the effect of feature reduction on the quality of the land cover map is assessed. The analyzed data set consists of 20 polarimetric features derived from L-band (1.25 GHz) SAR acquired by the Danish EMISAR on four dates within the period April to July in 1998. The predictive capacity of each feature is analyzed by the importance score generated by random forests (RF). Results show that according to the variation in importance score over time, a distinction can be made between general and specific features for crop classification. Based on the importance ranking, features are gradually removed from the single-date data sets in order to construct several multidate data sets with decreasing dimensionality. In the accuracy-oriented and efficiency-oriented reduction, the input is limited to eight and three features per acquisition, respectively. On the reduced input, a multidate model is built using the RF algorithm. Results indicate a decline in the classification uncertainty when feature reduction is performed.

AB - Although the use of multidate polarimetric synthetic aperture radar (SAR) data for highly accurate land cover classification has been acknowledged in the literature, the high dimensionality of the data set remains a major issue. This study presents two different strategies to reduce the number of features in multidate SAR data sets: an accuracy-oriented reduction and an efficiency-oriented reduction. For both strategies, the effect of feature reduction on the quality of the land cover map is assessed. The analyzed data set consists of 20 polarimetric features derived from L-band (1.25 GHz) SAR acquired by the Danish EMISAR on four dates within the period April to July in 1998. The predictive capacity of each feature is analyzed by the importance score generated by random forests (RF). Results show that according to the variation in importance score over time, a distinction can be made between general and specific features for crop classification. Based on the importance ranking, features are gradually removed from the single-date data sets in order to construct several multidate data sets with decreasing dimensionality. In the accuracy-oriented and efficiency-oriented reduction, the input is limited to eight and three features per acquisition, respectively. On the reduced input, a multidate model is built using the RF algorithm. Results indicate a decline in the classification uncertainty when feature reduction is performed.

KW - Classification unvertainty

KW - Entropy

KW - Input reduction

KW - Land cover

KW - Polarimetric features

KW - Polarimetric synthetic aperture radar (SAR)

KW - Prediction probabilities

KW - Random forests

U2 - 10.1109/TGRS.2012.2189012

DO - 10.1109/TGRS.2012.2189012

JO - I E E E Transactions on Geoscience and Remote Sensing

JF - I E E E Transactions on Geoscience and Remote Sensing

SN - 0196-2892

IS - 10

VL - 50

SP - 4185

EP - 4200

ER -