Impact of Pyrene exposure during overwintering of the Arctic Copepod Calanus glacialis

Research output: Research - peer-reviewJournal article – Annual report year: 2018

DOI

View graph of relations

While ongoing warming and sea ice decline threaten unique Arctic ecosystems, they improve the prospect of exploiting fossil fuels in the seafloor. Arctic Calanus copepods can accumulate oil compounds in the large lipid reserves that enable them to cope with highly seasonal food availability characteristic of the Arctic. While spending a significant part of their lives overwintering at depth, their vulnerability to oil contamination during winter remains unknown. We investigated effects of the hazardous crude oil component pyrene on overwintering Calanus glacialis, a key species in Arctic shelf areas. Females were exposed from December to March and then transferred to clean water and fed until April. We showed that long-term exposure during overwintering reduced survival and lipid mobilization in a dose-dependent manner at concentrations previously considered sublethal. After exposure, strong delayed effects were observed in lipid recovery, fecal pellet, and egg production. We showed that 50% lethal threshold concentrations were at least 300 times lower than expected, and that 50% effect thresholds for pellet and egg production were at least 10 times lower than previously documented. Our study provides novel insights to the effects of oil contamination during winter, which is essential to evaluate ecological impacts of Arctic oil pollution.
Original languageEnglish
JournalEnvironmental Science and Technology
Volume52
Issue number18
Pages (from-to)10328-10336
ISSN0013-936X
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 152736987