Impact of non-hookean behaviour on mechanical performance of hybrid composites

Impact of non-hookean behaviour on mechanical performance of hybrid composites

Hybrid composites, based on unidirectional fibres of carbon and glass, in an epoxy matrix have been used to investigate the possibility of a hybrid effect. The hybrid effect is observed experimentally by values for both composite strength and composite failure strain, which are increased compared to a simple model. The introduction of an increase of the failure strain of the carbon fibre part (the "fibre") of the composite, described by a factor H for the increase of the failure strain, results in theoretical curves for strength and failure strain, which are in general agreement with the experimental data. For the present hybrid composites a value of $H = \ldots$ is required, meaning a positive hybrid effect on "fibre" strain of 22%. It is thus concluded that the simple concept of a hybrid factor H for the fibre failure strain can describe the observed hybrid effect satisfactorily.

General information
State: Published
Organisations: Department of Wind Energy, Composites Mechanics and Materials Mechanics
Contributors: Markussen, C. M., Madsen, B., Lilholt, H., Løgstrup Andersen, T.
Number of pages: 9
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the 20th International Conference on Composite Materials
Publisher: ICCM20 Secretariat
Keywords: Carbon fibres, Glass fibres, Hybrid composites, Stress strain curves, Modelling
Electronic versions: Paper
Research output: Research - peer-review > Article in proceedings – Annual report year: 2015