Immuno PET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo - DTU Orbit (03/12/2018)

Immuno PET/MR imaging allows specific detection of **Aspergillus fumigatus lung infection in vivo**

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus **Aspergillus fumigatus**, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of *A. fumigatus* lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a $[^{64}\text{Cu}]$DOTA-labeled *A. fumigatus*-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted *A. fumigatus*-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer $[^{64}\text{Cu}]$DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to $[^{18}\text{F}]$FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for non-invasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation.

General information

State: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Eberhard-Karls-Universität Tübingen, University of Exeter, CheMatech, Otto von Guericke University Magdeburg, Tübingen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, University of Duisburg-Essen, Paul Scherrer Institute
Pages: E1026-E1033
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Proceedings of the National Academy of Sciences
Volume: 113
Issue number: 8
ISSN (Print): 0027-8424
Ratings:

- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 8.59 SJR 6.092 SNIP 2.626
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 8.56 SJR 6.576 SNIP 2.642
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 8.84 SJR 6.814 SNIP 2.691
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 8.86 SJR 6.898 SNIP 2.734
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 9.5 SJR 7.073 SNIP 2.738
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 9.49 SJR 6.868 SNIP 2.697
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 2
- Scopus rating (2011): CiteScore 9.31 SJR 6.864 SNIP 2.646
- ISI indexed (2011): ISI indexed yes