Immunizations on small worlds of tree-based wireless sensor networks - DTU Orbit (04/03/2019)

Immunizations on small worlds of tree-based wireless sensor networks

The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization, are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world when the spatial-temporal dynamics of the epidemic are considered. The oscillations come from the small-world structure and the temporary immunization. Mathematical analyses on the small world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies.

General information

State: Published
Organisations: Department of Mechanical Engineering, Beijing Institute of Technology, University of Western Macedonia
Contributors: Li, Q., Zhang, B., Cui, L., Fan, Z., Vasilakos, A. V.
Number of pages: 9
Pages: 050205
Publication date: 2012
Peer-reviewed: Yes

Publication information

Journal: Chinese Physics B
Volume: 21
Issue number: 5
ISSN (Print): 1674-1056
Ratings:
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 0.8 SJR 0.263 SNIP 0.406
- Web of Science (2017): Impact factor 1.321
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 0.57 SJR 0.339 SNIP 0.526
- Web of Science (2016): Impact factor 1.223
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 0.59 SJR 0.411 SNIP 0.678
- Web of Science (2015): Impact factor 1.436
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 0.74 SJR 0.495 SNIP 0.872
- Web of Science (2014): Impact factor 1.603
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 0.52 SJR 0.399 SNIP 0.781
- Web of Science (2013): Impact factor 1.392
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 0.6 SJR 0.312 SNIP 0.577
- Web of Science (2012): Impact factor 1.148
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 1.05 SJR 0.403 SNIP 0.731
- Web of Science (2011): Impact factor 1.376