Immunity of the Fe-N-C catalysts to electrolyte adsorption: phosphate but not perchloric anions - DTU Orbit (09/12/2018)

Immunity of the Fe-N-C catalysts to electrolyte adsorption: phosphate but not perchloric anions

Non-precious metal catalysts (NPMCs), particularly the type based on carbon-supported FeN\textsubscript{x} functionalities (Fe-N-C) are a very promising material for replacing the rare and costly platinum-based catalysts in polymer electrolyte membrane fuel cells (PEMFCs). Evaluation of these materials is most often carried out, like for Pt-based catalysts, in dilute perchloric acid by assuming its non-adsorbing nature on the active sites. The assumption is however not true. In this work, a typical Fe-N-C catalyst was first synthesized by high-pressure pyrolysis in the presence of carbon support and thoroughly characterized in terms of morphology, structure and active site distribution. The subsequent electrochemical characterization of the catalyst shows strong adsorption and poisoning effect of, in addition to the known Cl-, perchloric anions on the oxygen reduction reaction (ORR) activity. On the contrary phosphate anions exhibit negligible poisoning effect on the catalyst activity. At 0.8V vs. RHE, the ORR activity of the catalyst is found to decrease in the order of H\textsubscript{3}PO\textsubscript{4} (8.6mA mg-1)>H\textsubscript{2}SO\textsubscript{4} (5.3mA mg-1)>HClO\textsubscript{4} (3.1mA mg-1)>HCl (0.7mA mg-1). The results suggest potential applications of NPMC in high-temperature PEMFCs based on phosphoric acid doped polymer membranes, where high loading platinum catalysts are currently used. As demonstrated in the low current density range of high-temperature PEMFCs, the catalyst shows a comparable performance to the Pt/C catalysts.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Proton conductors
Contributors: Hu, Y., Jensen, J. O., Pan, C., Cleemann, L. N., Shypunov, I., Li, Q.
Pages: 357-364
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Applied Catalysis B: Environmental
Volume: 234
ISSN (Print): 0926-3373
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 10.92 SJR 3.152 SNIP 2.359
Web of Science (2017): Impact factor 11.698
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.86 SJR 2.693 SNIP 2.185
Web of Science (2016): Impact factor 9.446
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.72 SJR 2.326 SNIP 2.16
Web of Science (2015): Impact factor 8.328
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.92 SJR 2.322 SNIP 2.206
Web of Science (2014): Impact factor 7.435
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.42 SJR 2.391 SNIP 2.154
Web of Science (2013): Impact factor 6.007
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.08 SJR 2.65 SNIP 2.234
Web of Science (2012): Impact factor 5.825
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes