Image Deblurring with Krylov Subspace Methods

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2011

View graph of relations

Image deblurring, i.e., reconstruction of a sharper image from a blurred and noisy one, involves the solution of a large and very ill-conditioned system of linear equations, and regularization is needed in order to compute a stable solution. Krylov subspace methods are often ideally suited for this task: their iterative nature is a natural way to handle such large-scale problems, and the underlying Krylov subspace provides a convenient mechanism to regularized the problem by projecting it onto a low-dimensional "signal subspace" adapted to the particular problem. In this talk we consider the three Krylov subspace methods CGLS, MINRES, and GMRES. We describe their regularizing properties, and we discuss some computational aspects such as preconditioning and stopping criteria.
Original languageEnglish
TitleProceedings of WSC 2011
Publication date2011
StatePublished

Conference

Conference36th Conference of the Dutch-Flemish Numerical Analysis Communities
Number36
CountryNetherlands
CityZeist
Period01/01/11 → …
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5866352