IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar
- DTU Orbit (28/11/2018)

IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

General information
State: Published
Number of pages: 22
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing
Volume: 10
Issue number: 3
Article number: 406
ISSN (Print): 2072-4292
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.03 SJR 1.386 SNIP 1.559
Web of Science (2017): Impact factor 3.406
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.56 SJR 1.309 SNIP 1.718
Web of Science (2016): Impact factor 3.244
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 3.76 SJR 1.349 SNIP 1.682
Web of Science (2015): Impact factor 3.036
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.23 SJR 1.275 SNIP 1.856
Web of Science (2014): Impact factor 3.18
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.01 SJR 1.127 SNIP 1.973
Web of Science (2013): Impact factor 2.623
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.36 SJR 0.99 SNIP 1.801
Web of Science (2012): Impact factor 2.101
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 1.3 SJR 0.533 SNIP 1.327
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.333 SNIP 0.772
Original language: English
Keywords: Complex flow, Doppler lidar, Power performance testing, Resource assessment, Wind energy, Wind turbine controls
Electronic versions:
remotesensing_10_00406_v2.pdf
DOIs: