Identifying requirements for communication support: A maturity grid-inspired approach - DTU Orbit (30/12/2018)

Identifying requirements for communication support: A maturity grid-inspired approach

Communication is a critical success factor in design. It can be seen as the social and cognitive process by which information is selected, messages are exchanged between interacting partners, and meaning is created. How communication processes can best be captured, analysed and assessed, as a preliminary step toward suggestions for improvement of communication practices, remains a challenge for researchers and practitioners. To this end, a maturity grid-inspired approach to audit communication practices has been developed. This paper employs a maturity grid approach and reflects critically on the construction and application of the approach in a structured group workshop in software design. Such an approach yields dual benefits: (a) as a research method to gather insight into communication and (b) as a guide to plan improvements in practice. Conclusions are drawn for the process of auditing communication in design.

Keyword: New product development; Collaborative design; Requirement elicitation; Communication; Communication support; Communication assessment; Maturity grid; Benchmarking

General information
State: Published
Organisations: Technical University of Denmark, The Open University, University of Cambridge
Contributors: Maier, A. M., Eckert, C. M., Clarkson, P. J.
Pages: 663-672
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Expert Systems with Applications
Volume: 31
ISSN (Print): 0957-4174
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.22 SJR 1.271 SNIP 2.449
Web of Science (2017): Impact factor 3.768
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.7 SJR 1.343 SNIP 2.463
Web of Science (2016): Impact factor 3.928
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.11 SJR 1.473 SNIP 2.522
Web of Science (2015): Impact factor 2.981
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.63 SJR 1.476 SNIP 2.564
Web of Science (2014): Impact factor 2.24
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.31 SJR 1.305 SNIP 2.348
Web of Science (2013): Impact factor 1.965
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.38 SJR 1.148 SNIP 2.419
Web of Science (2012): Impact factor 1.854
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.76 SJR 1.113 SNIP 2.541
Web of Science (2011): Impact factor 2.203
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.046 SNIP 1.807
Web of Science (2010): Impact factor 1.926